Short time heat diffusion in compact domains with discontinuous transmission boundary conditions
نویسندگان
چکیده
We consider a heat problem with discontinuous diffusion coefficients and discontinuous transmission boundary conditions with a resistance coefficient. For all compact (ǫ, δ) -domains Ω ⊂ Rn with a d -set boundary (for instance, a self-similar fractal), we find the first term of the small-time asymptotic expansion of the heat content in the complement of Ω , and also the second-order term in the case of a regular boundary. The asymptotic expansion is different for the cases of finite and infinite resistance of the boundary. The derived formulas relate the heat content to the volume of the interior Minkowski sausage and present a mathematical justification to the de Gennes’ approach. The accuracy of the analytical results is illustrated by solving the heat problem on prefractal domains by a finite elements method.
منابع مشابه
Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions
This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...
متن کاملStability of Discontinuous Diffusion Coefficients and Initial Conditions in an Inverse Problem for the Heat Equation
We consider the heat equation with a discontinuous diffusion coefficient and give uniqueness and stability results for both the diffusion coefficient and the initial condition from a measurement of the solution on an arbitrary part of the boundary and at some arbitrary positive time. The key ingredient is the derivation of a Carleman-type estimate. The diffusion coefficient is assumed to be dis...
متن کاملWave Propagation at the Boundary Surface of Inviscid Fluid Half-Space and Thermoelastic Diffusion Solid Half-Space with Dual-Phase-Lag Models
The present investigation deals with the reflection and transmission phenomenon due to incident plane longitudinal wave at a plane interface between inviscid fluid half-space and a thermoelastic diffusion solid half-space with dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) models. The theory of thermoelasticity with dual-phase-lag heat transfer developed by Roychoudhar...
متن کاملInverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملSolution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method
The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...
متن کامل